Copied to
clipboard

G = C3xC72:3C3order 441 = 32·72

Direct product of C3 and C72:3C3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C3xC72:3C3, C72:4C32, C21:2(C7:C3), (C7xC21):3C3, C7:3(C3xC7:C3), SmallGroup(441,12)

Series: Derived Chief Lower central Upper central

C1C72 — C3xC72:3C3
C1C7C72C72:3C3 — C3xC72:3C3
C72 — C3xC72:3C3
C1C3

Generators and relations for C3xC72:3C3
 G = < a,b,c,d | a3=b7=c7=d3=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b4, dcd-1=c2 >

Subgroups: 276 in 28 conjugacy classes, 12 normal (5 characteristic)
Quotients: C1, C3, C32, C7:C3, C3xC7:C3, C72:3C3, C3xC72:3C3
49C3
49C3
49C3
3C7
3C7
49C32
3C21
3C21
7C7:C3
7C7:C3
7C7:C3
7C7:C3
7C7:C3
7C7:C3
7C3xC7:C3
7C3xC7:C3

Smallest permutation representation of C3xC72:3C3
On 63 points
Generators in S63
(1 19 12)(2 20 13)(3 21 14)(4 15 8)(5 16 9)(6 17 10)(7 18 11)(22 36 29)(23 37 30)(24 38 31)(25 39 32)(26 40 33)(27 41 34)(28 42 35)(43 57 50)(44 58 51)(45 59 52)(46 60 53)(47 61 54)(48 62 55)(49 63 56)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)
(1 4 7 3 6 2 5)(8 11 14 10 13 9 12)(15 18 21 17 20 16 19)(22 28 27 26 25 24 23)(29 35 34 33 32 31 30)(36 42 41 40 39 38 37)(43 48 46 44 49 47 45)(50 55 53 51 56 54 52)(57 62 60 58 63 61 59)
(1 45 27)(2 47 24)(3 49 28)(4 44 25)(5 46 22)(6 48 26)(7 43 23)(8 51 32)(9 53 29)(10 55 33)(11 50 30)(12 52 34)(13 54 31)(14 56 35)(15 58 39)(16 60 36)(17 62 40)(18 57 37)(19 59 41)(20 61 38)(21 63 42)

G:=sub<Sym(63)| (1,19,12)(2,20,13)(3,21,14)(4,15,8)(5,16,9)(6,17,10)(7,18,11)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (1,4,7,3,6,2,5)(8,11,14,10,13,9,12)(15,18,21,17,20,16,19)(22,28,27,26,25,24,23)(29,35,34,33,32,31,30)(36,42,41,40,39,38,37)(43,48,46,44,49,47,45)(50,55,53,51,56,54,52)(57,62,60,58,63,61,59), (1,45,27)(2,47,24)(3,49,28)(4,44,25)(5,46,22)(6,48,26)(7,43,23)(8,51,32)(9,53,29)(10,55,33)(11,50,30)(12,52,34)(13,54,31)(14,56,35)(15,58,39)(16,60,36)(17,62,40)(18,57,37)(19,59,41)(20,61,38)(21,63,42)>;

G:=Group( (1,19,12)(2,20,13)(3,21,14)(4,15,8)(5,16,9)(6,17,10)(7,18,11)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (1,4,7,3,6,2,5)(8,11,14,10,13,9,12)(15,18,21,17,20,16,19)(22,28,27,26,25,24,23)(29,35,34,33,32,31,30)(36,42,41,40,39,38,37)(43,48,46,44,49,47,45)(50,55,53,51,56,54,52)(57,62,60,58,63,61,59), (1,45,27)(2,47,24)(3,49,28)(4,44,25)(5,46,22)(6,48,26)(7,43,23)(8,51,32)(9,53,29)(10,55,33)(11,50,30)(12,52,34)(13,54,31)(14,56,35)(15,58,39)(16,60,36)(17,62,40)(18,57,37)(19,59,41)(20,61,38)(21,63,42) );

G=PermutationGroup([[(1,19,12),(2,20,13),(3,21,14),(4,15,8),(5,16,9),(6,17,10),(7,18,11),(22,36,29),(23,37,30),(24,38,31),(25,39,32),(26,40,33),(27,41,34),(28,42,35),(43,57,50),(44,58,51),(45,59,52),(46,60,53),(47,61,54),(48,62,55),(49,63,56)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63)], [(1,4,7,3,6,2,5),(8,11,14,10,13,9,12),(15,18,21,17,20,16,19),(22,28,27,26,25,24,23),(29,35,34,33,32,31,30),(36,42,41,40,39,38,37),(43,48,46,44,49,47,45),(50,55,53,51,56,54,52),(57,62,60,58,63,61,59)], [(1,45,27),(2,47,24),(3,49,28),(4,44,25),(5,46,22),(6,48,26),(7,43,23),(8,51,32),(9,53,29),(10,55,33),(11,50,30),(12,52,34),(13,54,31),(14,56,35),(15,58,39),(16,60,36),(17,62,40),(18,57,37),(19,59,41),(20,61,38),(21,63,42)]])

57 conjugacy classes

class 1 3A3B3C···3H7A···7P21A···21AF
order1333···37···721···21
size11149···493···33···3

57 irreducible representations

dim1113333
type+
imageC1C3C3C7:C3C3xC7:C3C72:3C3C3xC72:3C3
kernelC3xC72:3C3C72:3C3C7xC21C21C7C3C1
# reps162481224

Matrix representation of C3xC72:3C3 in GL3(F43) generated by

600
060
006
,
1100
0350
0021
,
4100
0160
004
,
010
001
100
G:=sub<GL(3,GF(43))| [6,0,0,0,6,0,0,0,6],[11,0,0,0,35,0,0,0,21],[41,0,0,0,16,0,0,0,4],[0,0,1,1,0,0,0,1,0] >;

C3xC72:3C3 in GAP, Magma, Sage, TeX

C_3\times C_7^2\rtimes_3C_3
% in TeX

G:=Group("C3xC7^2:3C3");
// GroupNames label

G:=SmallGroup(441,12);
// by ID

G=gap.SmallGroup(441,12);
# by ID

G:=PCGroup([4,-3,-3,-7,-7,434,2019]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^7=c^7=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^4,d*c*d^-1=c^2>;
// generators/relations

Export

Subgroup lattice of C3xC72:3C3 in TeX

׿
x
:
Z
F
o
wr
Q
<